怎么用Python计算地球上任意两个用经纬度表示的点的弧面距离?

这是来自知乎上的问题。问我的时候,恰好我在写一个和向量计算相关的文章,于是灵光乍现,顺手写了这样一个答案。该算法未经严格验证,请谨慎参考。具体思路如下。

  1. 将两个点的经纬度换算成空间坐标;
  2. 计算地心与两个点所成的两个向量的点积;
  3. 点积除以两个向量的模(也就是地球半径)之积,结果就是向量夹角的余弦;
  4. 反余弦值对应着两点所在大圆(即经过两点的地球表面最大的圆)的弧度;
  5. 弧度乘以地球半径,即得弧长。

代码如下。

>>> def get_arc(p0, p1, r=1):
	z0 = r*np.sin(np.radians(p0[1]))
	x0 = r*np.cos(np.radians(p0[1]))*np.cos(np.radians(p0[0]))
	y0 = r*np.cos(np.radians(p0[1]))*np.sin(np.radians(p0[0]))
	z1 = r*np.sin(np.radians(p1[1]))
	x1 = r*np.cos(np.radians(p1[1]))*np.cos(np.radians(p1[0]))
	y1 = r*np.cos(np.radians(p1[1]))*np.sin(np.radians(p1[0]))
	theta = np.arccos(np.dot((x0,y0,z0),(x1,y1,z1))/(r*r))
	return theta * r

>>> r = 6377.830 # 使用赤道半径,单位:km
>>> 北京 = (116.5,40.0)
>>> 济南 = (117.0,36.4)
>>> 悉尼 = (151.2,-33.9)
>>> 纽约 = (-74.0,40.5)
>>> 巴西利亚 = (-48.0,-15.9)
>>> get_arc(北京, 济南, r=r)
403.10853123743505
>>> get_arc(北京, 悉尼, r=r)
8966.07982007138
>>> get_arc(北京, 纽约, r=r)
11012.732277406261
>>> get_arc(北京, 巴西利亚, r=r)
16962.014473669606
相关推荐
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业正在做毕设学生与需要项目实战练习Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带源码资料可作为毕设使</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>性能有巨大提升。并且,<span>YOLOv4-tiny</span>权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使<span>labelImg</span>标注和使<span>YOLOv4-tiny</span>训练自己数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程<span>YOLOv4-tiny</span>使<span>AlexAB/darknet</span>,在<span>Windows10</span>系统做项目演示。包括:<span>YOLOv4-tiny</span>网络结构、安装<span>YOLOv4-tiny</span>、标注自己数据集、整理自己数据集、修改配置文件、训练自己数据集、测试训练出网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己数据集》外,本人推出了有关<span>YOLOv4</span>目标检测系列课程。请持续关注该系列其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 15.20元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值